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One form of proof is discussed for the theorem on the completeness of
the eigenfunctions in the ranges (—1, 1) and (0, 1) of the angular var-
iable. The results may be used to determine the critical size of a
planar reactor and to solve Milne's problem in the multigroup ap-
proximation.

The completeness of the eigenfunctions of a system of multigtoup
transport equations has been discussed [1,2], but a very complicated
method was used to regularize the system of singular integral equations
used in proving the theorem. A simpler proof of the completeness is
given below.

1, Eigenfunctions and eigenvalues. The treatment
of [3] is followed here. One of the basic problems of
neutron transport theory is to find the spatial and
energy distributions, which are described approxi-
mately by a system of linearized Boltzmann equations
on the assumption that the total macroscopic inter-
action cross section has a power-law dependence on
the energy.

We write the system of multigroup transport equa~

tions as 09, (x, 1)
dx
N R )
+oi(e W) =3 o | Bile W)W Gt @1
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Here oj is the total macroscopic cross section for
the interaction and u is the projection for unit velocity
vector on the X axis

£, .
Cij= 5 (91 4 vyo ),

where oj—’i, Vs crfj, ozi are, respectively, the cross
section for scattering (elastic and inelastic), the num-
ber of secondary neutrons, the fission cross section
for the group, and the fission-neutron spectrum.

We make the change of variable t = u/oi and set
¥; (X, t) = 039; (X, t/0j) to get
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¢ M L Pz, t) =
8.
N j
1
= — 1.2
2 S (@, t')dt’ («*}, ";—) (1.2)
=L 4
The solution is sought in the form
i (2, 1) = exp (— z/v) D; (v, 9). (1.3)
Substitution of (1.3) into (1.2) gives
(v—E) @z {v, t) = vH; (v),
N (1.4)
Hi(v) = Z Cij S d)j (v, t')dt"
=1 s
From (1.4) we have
D;(v, t) = i( v) + A (v)d(v—1t). (1.5)

The definition of H;(v) yields
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The right side of (1.6) becomes zero if v & — 9, 0,
where ¥, = 1 /3, 6,= min (0, . . ., On).
From the condition of solubility,

2 {8 — veuf; (V)] H;(v) = 0> 1.7)

we get the characteristic equation

Q (v) = det [6; —Vi'ij fi{(v)l =0 (1.8)

for the eigenvalues vg. The corresponding eigenfunc-

tions are

Vet (1.9)
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The total number of roots of the characteristic equa—

‘tion may be found via the principle of the argument,

Q7 (D)

2M =
Q7 (B)

lengm 2m[ n’ —In 9*‘—%)]. (1.10)
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Here ¥*(v) are the limiting values of the piecewise~
holomorphic function Q(z); contour C encloses the sec-
tion (=&, %) along the real axis. The continuum of
eigenvalues lies in that range; the corresponding eigen-
functions are given by (1.5). We shall show that the
eigenfunctions of (1.5)and (1.9) form a complete system.

2, Theorem 2.1. A system of arbitrary functions

Fj(t) that satisfy Holder's condition for |t| = 1/0; =4,
may be represented uniquely in the form
By
S vH, (v) dv
(1) =2 AD;(vs, t —_—t
z ) 52=1 8 1( )+_Ssa v—1 (2’1)
+ 2 () (¢ & (— Bo, To)) -

In other words, the system of singular integral
equations of (2.1) allows us to determine uniquely the
2M constants Ag and the N functions Hj(v).

Proof, We eliminate A\y(t) via (1.7) to get

N
2 18y — veysf; () H, (v) +
j=1
% vH (v)dv

+Z e5 % (V) S

(F (v)_.F (v)—z A®

«vZ et () F{ (v).

D, (v, v)) . (2.2)
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Consider the function
1 % vH; (vydv 1
mo=gr { e (meg)
0

This function is analytic in the plane with its section along the
real axis from - &, to 9y and vanishes at infinity; the limiting values
are given by the formula

- ! & VH;(v)dv g
NEE)= 57 S v —v 7 VH; (v) -
—8,

This implies that

Nt (v} — Ny~ {(v) = vH; v,

90 ’
1 ¢ VH (V)Y
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Substitution of (2.2) into (2.3) gives

N N
El (24T (VN () — Qi (VN7 (W] =v ] ek (W) F5 (). (2.4)
= =
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Then the above formula gives

N N 8y
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Here Pi<k)(z) is an arbitrary polynomial. Since lim Qij(z) = cornst
for z = e, the functions Ny(z) that vanish at infinity are the solution
to (2.5) for Pi(k)(z) = 0. The solution of the system exists if

N k0 ’
s vy (V) F(v)dv
2 e vy y 5= — =0
i, j=1 =5, !
(1=1,2,3,..., 2M). (2.6)

Here Hj (vy) is the solution of the homogeneous system conjugate
to (2.5). From (2.6) we derive the 2M constants Ag; the Ay(t) may be
found via (1.7). The theorem is now proved.

It has been shown {3,4] that the determination of
eritical size and albedo for a plane layer may be re-
duced fo a boundary problem of the type of (2.4).

The situation is different as regards the solution
of Milne's problem. Here the F;(t) are given in the
range (0,4;), and the above formula cannot be used to
solve the problem of (2.4) because the functions Nj (z)
and matrix elements Qij (z) are analytic in different
regions. Hence we have to consider the problem

N
N (v) — 2 GV (v) = g (v)

i=1

N
Cr; (v) = D) 17 (W QT (v),
i=i

N
gr(v) = 2 [Qu" (1" ety (V) Ff (v).
i, j=1

However, no effective means of solving this is known.

Matrices (ci-) and (SZ-U-) are triangular in relation
to the moderation of neutrons by nuclei of low or me~
dium weight, whereupon the above problem may be
solved fairly simply.

3. Theorem 3.1. A system of arbitrary functions
F;(t) that satisfy Holder's condition for 0 <t =< 1/g, =

= &4y may be represented uniquely as

M P oy,
Filt) =% A(ve ) +§ 10 oy
s=1 4]

+ha(t) (3.1)

Proof. The above arguments are repeated to reduce (3.1) to

(i=14,..., N).

N* (V) G (¥) —~ Ni~ (v) =

v ..
—WEI G (W F7 () (i=1,..., N), (3.2)
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Gy(v) =

Here N#( v) are the limiting values of the piecewise holomorphic
function
1 § vH  (v)dv

Ni(z):?ftf v—z

lim &, (z) =0- (8.4)
0 Z—=00

Now (cjj) is a triangular matrix, so the number of roots to (1.8) is

N
1 Q5" (o) Q5" (— o) ]
2M = _. §..11In Y — In_ Y .
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Then from ij (-v) = ij (v) we have
N
1 Q5" (80) 1
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The index in the conjugation problem equals the sum of the partial
indices [5]
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Q.+ (0 -+
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Comparison of (3.5) and (8.6) shows that all the partial indices are
negative, so the solution to (3.2) that vanishes at infinity is given by
By o _ m
1 ¢ X (V) {
N = (V) F(v) —
m(3) = Tz ) é T U 21 Cmilly (V) F (v)

M1 X
= 2 () N ) = 25N o)
j=1

dv
v —
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subject to the condition
‘Bﬂ

4 X0 [ e )
V" By Bt 00

m—1]
— 2 12 GIN; () — () Ny ()]} dv =0,
= Gy =0, 4, ..., %, — 1) - (3.8)

Here X,my(2) is the solution to the homogeneous problem
X (V)= G (¥) Xy (9)

Hence the total number of additional conditions that define the Ag

is equal to the total index.
We set m = 1 to find Ny(z), which is substituted into the second

equation of (3.7) to Ny(2), and so on.
, H; (v) is readily found via (2.3); (1.7) relates Aj(v)
to Hj(v).
The results are readily generalized to the case of
anisotropic scattering.
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